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Introduction

Ruminant species differ distinctively in the 
way digesta phases are retained in the gastrointes-
tinal tract (GIT), and, particularly, in the reticulo-
rumen (RR) (Clauss et al., 2006; Przybyło et al., 
2019). Whereas large particles of 10 and 20 mm 
are generally not retained in a discriminant manner 
(Schwarm et al., 2009), and the selective retention 
of large compared to small particles is a universal 
ruminant feature (Dittmann et al., 2015), the differ-
ence between fluid and small particle retention is not 
as distinct in ‘moose-type’ ruminants as it is in ‘cat-
tle-type’ ruminants (Clauss et al., 2010). The ratio 
of the mean retention time (MRT) of small particles 
and fluids (the ‚selectivity factor’ SF; Lechner-Doll 

et al., 1990) in the RR of ‘moose-type’ ruminants 
typically is below 1.80, whereas that of ‘cattle-type’ 
ruminants is higher than 1.80 and can reach values 
of up to 3.50 (Przybyło et al., 2019). This character-
istic is also associated with a variety of other mor-
phological and anatomical features of the ruminant 
digestive tract (Ehrlich et al., 2019). The association 
to diet appears to be indirect, with ‘moose-type’ ru-
minants apparently constrained to browse-dominat-
ed diets, whereas ‘cattle-type’ ruminants can ingest 
a large variety of diets – from large proportions of 
browse to grass-only diets (Przybyło et al., 2019). 
Thus, the original concept of a comparatively strict 
association between ruminant morphophysiology 
and diet (Hofmann, 1989) has in the meantime been 
softened to emphasize that while general trends are 
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evident, outliers as well as flexibility in the diet-
morphophysiology relationship exist (Clauss and 
Hofmann, 2014; Przybyło et al., 2019; Hertaeg 
et al., 2021). 

Members of the tribe of the ‘Tragelaphini’, the 
spiral-horned antelopes, have been at the core of the 
debate about the generalizability of the original con-
cept (Hofmann, 1989): as a response to the original 
concept, Robbins et al. (1995) reported that the sali-
vary gland mass of several Tragelaphini – the nyala 
(Tragelaphus angasii), the bushbuck (T. scriptus), 
and in particular the greater kudu (T. strepsiceros) – 
were lower than expected from the high proportion 
of browse these species typically include in their 
diet. A lack of expected correlation between the pro-
portion of grass in the natural diet and salivary gland 
size or masseter mass was later confirmed for the 
Tragelaphini (Clauss et al., 2008; Hofmann et al., 
2008). For greater kudu, a suspected susceptibility 
to tannin-induced digestive problems that would 
speak for comparatively low salivary tannin-binding 
proteins (Van Hoven, 1991), the reportedly small 
salivary glands (Robbins et al., 1995), a very low 
magnitude of salivary tannin binding (Ward et al., 
2020), and a relatively distinct difference in the 
papillation of the dorsal as compared to the middle 
rumen (Clauss et al., 2009b) would all suggest that 
kudu saliva is not very protein-rich, hence not very 
viscous, and that therefore rumen contents might 
show a higher degree of stratification (as reflected 
in the papillation pattern). This would lead to the 
prediction of a ‘cattle-type’ physiology as observed 
in the Tragelaphini nyala, bongo (T. eurycerus) and 
sitatunga (T. spekii). By contrast, Codron and Clauss 
(2010) reported no stratification of free-ranging 
greater kudus’ rumen contents as quantified by the 
water content in the digesta of the dorsal and ventral 
rumen, which would suggest a ‘moose-type’ rumen 
physiology as observed in another large representa-
tive of the Tragelaphini, the eland (Taurotragus 
oryx) (Hejcmanová et al., 2020). This would also 
match the fact that greater kudus are strict browsers, 
both in their natural habitat, consistently reported 
across decades (Wilson et al., 1977; Owen-Smith 
and Cooper, 1989; Codron et al., 2007; Chinomona 
et al., 2018; Makhado et al., 2020), as well as in sec-
ondary habitats (Gray et al., 2006).

Greater kudu are notoriously nervous animals 
(Estes, 1991), which makes feeding experiments with 
frequent human contact comparatively challenging. 
Here, we used four calm animals at a zoological 
institution to perform standard measurements of 

digesta retention, in order to elucidate whether 
greater kudu rather have a ‘moose-type’ or a ‘cattle-
type’ digestive physiology.

Material and methods
The experiments were performed at the Sile-

sian Zoological Garden in December 2020, in ac-
cordance with Polish legislation on the protection 
of animals used for scientific purposes. Four adult 
female greater kudu (3 to 5 years of age, 90–148 kg) 
were used for experiments. The animals were kept 
individually (but with visual, acoustic and olfactory 
contact) for a period of 21 days, which included 
a 14-day adaptation and a 7-day collection period, 
in enclosures of 18 m2 on a concrete floor with wood 
shavings (except for the collection period) during 
winter, when cold weather constrained access to the 
outside enclosure. The diet consisted of lucerne hay 
provided for ad libitum consumption, dried browse, 
carrots and a mixture of a browser pellet and 
chopped dried lucerne (proportions and crude nutri-
ent composition of the ingested diet are presented 
in Table 1). Browse, carrots and the pellet mixture 
were offered in limited amounts (450, 150 and 550 g 
per animal and day, respectively, always completely 
eaten), but intake of lucerne hay was variable and 
recorded on a daily basis by weighing the amount 
offered and leftover. Water and salt lick were avail-
able for ad libitum consumption. One week after the 
experiment, the animals were weighed using a large 
animal scale placed in front of the hay rack (animals 
were standing on the scale during hay consumption). 
Representative samples of diet items were taken and 
analysed for dry matter, crude protein, neutral de-
tergent fibre and acid detergent fibre using standard 
methods (Górka et al., 2016).

To assess digesta kinetics, four passage markers 
were fed to the animals simultaneously as a single 
dose with the pellet mixture: Co-EDTA as a solute 
marker representing the fluid digesta phase, and 
mordanted fibres of different particle size (chromi-
um (Cr) < 2 mm, cerium (Ce) 10 mm, lanthanum 
(La) 20 mm), prepared as described in Lechner et al. 
(2010). Faecal samples were taken at 0, 4, 8, 12, 16, 
20, 24, 28, 32, 36, 40, 44, 48, 54, 60, 66, 72, 78, 
84, 90, 96, 104, 112, 120, 132, 144, 156 and 168 h 
after marker feeding. We referred to Przybyło et al. 
(2019) for the equations used to calculate the mean 
retention time (MRT), according to Thielemans 
et al. (1978) for the GIT and Lechner-Doll et al. 
(1990) for the RR.
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Results and discussion

All animals accepted the procedures well. At 
82 ± 7 g kg−0.75 day−1 (Table 1), dry matter intake was 
high for zoo-kept greater kudus when compared to 
an estimated range of 49–76 g kg−0.75 day−1 for great-
er kudus in UK zoos (Taylor et al., 2013), which was 
probably due to the high proportion of forage in the 
present study. 

The faecal marker excretion pattern was typical 
for ruminants: all markers showed the steep increase 
and the slower decrease indicative of a continu-
ously stirred tank reactor (Jumars, 2000), the solute 
marker was excreted earlier than the small particle 
marker, the small particle marker was excreted ear-
lier than the two large particle markers (Dittmann 
et al., 2015), and the two larger particle classes were 
excreted last, and together (Schwarm et al., 2009) 
(Figure 1). Mean retention times for the GIT were 
31 ± 3, 37 ± 4, 43 ± 1 and 43 ± 2 h for the solute, 
2, 10 and 20 mm particle marker, respectively. Cor-
responding values for the RR were 21 ± 4, 27 ± 5, 

33 ± 2 and 33 ± 3 h, respectively. This resulted in 
a low SF of 1.29 ± 0.15, clearly in the range of the 
‘moose-type’ ruminants (Przybyło et al., 2019).

While the number of animals was small in the 
present study, several studies have shown that di-
gesta kinetics are species-specific, repeatable, 
and largely independent of the diet ingested by 
the experimental animals (Renecker and Hudson 
1990; Lechner et al., 2010; Przybyło et al., 2019).  

The range of diets for which this characteristic was 
found to be independent in these studies spans sea-
sonal differences in browse structural and nutrient 
composition, which have been repeatedly noted 
for natural diets of greater kudu (Owen-Smith and 
Cooper 1989; Gray et al., 2006). Given the uniform-
ity of the results for the SF across the four animals, 
the SF measured in the present study should there-
fore be representative for greater kudu. Notably, 
this does not mean that other seasonal changes in 
RR physiology do not occur; such seasonal changes 
have, for example, been suggested for the activity of 
kudu rumen fluid (Boomker, 1984).

Table 1. Body mass, diet composition, dry matter intake and measures of digesta retention in four adult female greater kudus (Tragelaphus 
strepsiceros)

Indices Animal1
1 2 3 4

Body mass2, kg 107 112 148 90
Diet composition, % dry matter (DM) intake

lucerne hay 70 75 81 68
dried browse (various Salix spp.) 8 7 5 9
fresh, chopped carrot 1 1 1 1
concentrate mixture (pellets for browsers, 
dehydrated chopped lucerne) 21 17 13 22

CP/NDF/ADF3, % DM 15.1/52.0/43.0 15.0/52.6/43.8 14.9/53.3/44.7 15.1/51.7/42.7
DM intake, g/day 2447 2939 3781 2277
DM intake, g kg−0.75 day−1 74 85 89 78
MRTsolute-CoGIT, h 30 33 28 34
MRTparticle-CrGIT, h 36 34 36 43
MRTparticle-CeGIT, h 44 43 42 44
MRTparticle-LaGIT, h 44 42 42 45
SF GITCr/Co 1.20 1.05 1.26 1.25
SF GITCe/Cr 1.24 1.25 1.16 1.04
SF GITLa/Cr 1.22 1.24 1.16 1.05
MRTsolute-CoRR, h 19 21 18 26
MRTparticle-CrRR, h 24 23 25 34
MRTparticle-CeRR, h 33 31 31 36
MRTparticle-LaRR, h 32 31 31 37
SF RRCr/Co 1.32 1.07 1.43 1.32
SF RRCe/Cr 1.35 1.37 1.22 1.04
SF RRLa/Cr

1.32 1.35 1.23 1.07
1 each animal was kept in separate box (18 m2); 2 measured one week after the study; 3 average percentage of crude protein (CP)/neutral deter-
gent fibre (NDF)/acid detergent fibre (ADF) in DM of the ingested diet; NDF analysed with amylase, NDF and ADF values include residual ash;  
MRT – mean retention time, GIT – gastrointestinal tract, SF –  selectivity factor (=MRTparticle/MRTsolute), RR – reticulorumen; Co – cobalt,  
Cr – chromium, Ce – cerium, LA – lanthanum
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With a SF of 1.29 ± 0.15, greater kudu are similar 
to eland at 1.54 (Hejcmanová et al., 2020), but dif-
ferent from sitatunga (1.81), nyala (1.95) and bongo 
(2.39) (Przybyło et al., 2019). Evidently, within the 
Tragelaphini, the whole range of SF are present. For 
greater kudu and eland, the ‘moose-type’ SF corre-
sponds to their status as strict browsers, and they 
resemble giraffe (Giraffa camelopardalis) or moose 
(Alces alces) in that respect. As mentioned in the in-
troduction, the low SF matches the observation of no 
distinct rumen content stratification in greater kudu 
(Codron and Clauss, 2010), as has been described 
for other species with a low SF such as giraffe or 
moose (Clauss et al., 2009a; Sauer et al., 2017). This 
is typically explained by the saliva characteristics 
of such species – and hence their rumen fluid being 
particularly viscous due to its proteinaceous con-
tent, which also constrains sheer saliva output (Hof-
mann et al., 2008). Salivary tannin-binding proteins 
are considered the reason for the high protein con-
tent of the saliva of such ruminants (Hofmann et al., 
2008), and there is a certain relationship between 
salivary gland size and indicators of homogenous 
rumen contents (such as a low SF) (Ehrlich et al., 
2019; Przybyło et al., 2019). However, as men-
tioned in the introduction, greater kudu are reported 
to have particularly small salivary glands (Robbins 
et al., 1995), to be susceptible to negative effects of 
tannins (Van Hoven, 1991), and do not have promi-
nent salivary tannin-binding proteins (Ward et al., 
2020). These findings are at odds with those of the 

present study. A first step towards resolving the ap-
parent discrepancy would be a systematic recording 
of morphological (macroanatomy, including sali-
vary gland mass and intraruminal papillation) and 
physiological (including rumen contents stratifica-
tion and salivary tannin-binding proteins) measures, 
in a larger number of greater kudu, for example in 
the course of game hunting (Hoffman et al., 2009;  
Magwedere et al., 2013) – possibly across several 
seasons. Ideally, yet-to-be-determined transcrip-
tome markers applied to salivary gland cells could 
be found to quantify the expression of tannin-bind-
ing proteins in saliva.

Conclusions
The results of this study represent greater kudu 

as ‘moose-type’ ruminants, which agrees with their 
dietary classification as strict browsers. However, 
these findings appear to conflict with other, previ-
ously reported characteristics of kudu. To resolve 
these contradictions, new morphophysiological in-
vestigations of the species would be required.
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Figure 1. Marker excretion pattern for a solute and three particle markers of different sizes; data represent averages (SD) of four female greater 
kudus (Tragelaphus strepsiceros)
The peak excretion did not occur in all animals at the same time point, so 100% value is not reached. 
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